
Graph Partitioning for
Scalable Distributed Graph Computations

Aydın Buluç1 and Kamesh Madduri2

1 Lawrence Berkeley National Laboratory, USA,
abuluc@lbl.gov

2 The Pennsylvania State University, USA,
madduri@cse.psu.edu

Abstract. Inter-node communication time constitutes a significant frac-
tion of the execution time of graph algorithms on distributed-memory
systems. Global computations on large-scale sparse graphs with skewed
degree distributions are particularly challenging to optimize for, as prior
work shows that it is difficult to obtain balanced partitions with low
edge cuts for these graphs. In this work, we attempt to determine the
optimal partitioning and distribution of such graphs, for load-balanced
parallel execution of communication-intensive graph algorithms. We use
Breadth-First Search (BFS) as a representative example, and derive up-
per bounds on the communication costs incurred with a two-dimensional
partitioning of the graph. We present empirical results for communication
costs with various graph partitioning strategies, and also obtain parallel
BFS execution times for several large-scale DIMACS Challenge graph
instances on a large supercomputing platform. Our performance results
indicate that for several graph instances, reducing work and communi-
cation imbalance among partitions is more important than minimizing
the total edge cut.

Keywords: graph partitioning, hypergraph partitioning, inter-node com-
munication modeling, breadth-first search, 2D decomposition

1 Introduction

Graph partitioning is an essential preprocessing step for distributed graph com-
putations. The cost of fine-grained remote memory references is extremely high
in case of distributed memory systems, and so one usually restructures both
the graph layout and the algorithm in order to mitigate or avoid inter-node
communication. The goal of this work is to characterize the impact of common
graph partitioning strategies that minimize edge cut, on the parallel perfor-
mance of graph algorithms on current supercomputers. We use Breadth-First
Search (BFS) as our driving example, as it is representative of communication-
intensive graph computations. It is also frequently used as a subroutine for more
sophisticated algorithms such as finding connected components, spanning forests,
testing for bipartiteness, maximum flows, and computing betweenness centrality

2

on unweighted graphs. BFS has recently been chosen as the first representa-
tive benchmark for ranking supercomputers based on their performance on data
intensive applications [4].

Given a distinguished “source vertex” s, Breadth-First Search (BFS) sys-
tematically explores the graph G to discover every vertex that is reachable from
s. Let V and E refer to the vertex and edge sets of G, whose cardinalities are
n = |V | and m = |E|. We assume that the graph is unweighted; equivalently,
each edge e ∈ E is assigned a weight of unity. A path from vertex s to t is defined
as a sequence of edges 〈ui, ui+1〉 (edge directivity assumed to be ui → ui+1 in
case of directed graphs), 0 ≤ i < l, where u0 = s and ul = t. The length of a
path is the sum of the weights of edges. We use d(s, t) to denote the distance
between vertices s and t, or the length of the shortest path connecting s and t.
BFS implies that all vertices at a distance k (or “level” k) from vertex s should
be first “visited” before vertices at distance k + 1. The distance from s to each
reachable vertex is typically the final output. In applications based on a breadth-
first graph traversal, one might optionally perform auxiliary computations when
visiting a vertex for the first time. Additionally, a “breadth-first spanning tree”
rooted at s containing all the reachable vertices can also be maintained.

2 Parallel BFS

Data distribution plays a critical role in parallelizing BFS on distributed-memory
machines. The approach of partitioning vertices to processors (along with their
outgoing edges) is the so-called 1D partitioning, and is the method employed
by Parallel Boost Graph Library [5]. A two-dimensional edge partitioning is
implemented by Yoo et al. [9] for the IBM BlueGene/L, and by us [1] for different
generations of Cray machines. Our 2D approach is different in the sense that it
does a ’checkerboard’ partitioning (see below) of the sparse adjacency matrix
of the underlying graph, hence assigning contiguous submatrices to processors.
Both 2D approaches achieved higher scalability than their 1D counterparts. One
reason is that key collective communication phases of the algorithm are limited
to at most

√
p processors, thus avoiding the expensive all-to-all communication

among p processors. Yoo et al.’s work focused on low-diameter graphs with
uniform degree distribution, and ours mainly focused on low-diameter graphs
with skewed degree distribution. A thorough study of the communication volume
in 1D and 2D partitioning for BFS, which involves decoupling collectives scaling
from the number of words moved for a large set of graphs, has not been done.
This paper attempts to fill that gap.

We utilize a level-synchronous parallel BFS approach that works with 1D-
and 2D-graph partitionings. For BFS with 1D graph partitioning (or row-wise
adjacency matrix partitioning), there are three main steps:

– Local discovery: Inspect adjacencies of vertices in the current frontier.
– Fold: Exchange discovered adjacencies via an all-to-all communication step

among processors.
– Local update: Update distances/parents locally for unvisited vertices.

3

2D checkerboard partitioning assumes the sparse adjacency matrix of the
graph is partitioned as follows:

A =


A1,1 . . . A1,pc

...
. . .

...

Apr,1 . . . Apr,pc

 (1)

Processors are logically organized on a square p = pr × pc mesh, indexed by
their row and column indices. Submatrix Aij is assigned to processor P (i, j).

The parallel BFS algorithm with 2D partitioning has four steps:

– Expand: Construct the current frontier of vertices on each processor by a
collective gather step.

– Local discovery: Inspect adjacencies of vertices in the current frontier.
– Fold: Exchange newly-discovered adjacencies.
– Local update: Update distances/parents for unvisited vertices.

In contrast to the 1D case, communication in the 2D algorithm happens
only along one processor dimension. If Expand happens along one processor
dimension, then Fold happens along the other processor dimension. Detailed
pseudo-code for the 1D and 2D algorithms can be found in our earlier paper [1].

The performance of both algorithms heavily depend on the performance and
scaling of MPI collective MPI Alltoallv, and the 2D algorithm also depends on
the MPI AllGatherv collective.

3 Analysis of Communication Costs

In previous work [1], we studied the performance of parallel BFS on synthetic
Kronecker graphs used in the Graph 500 benchmark. We observed that the
communication volume was O(m) with a random ordering of vertices, and a
random partitioning of the graph (i.e., assigning m/p edges to each processor).
The edge cut was also O(m) with random partitioning. While it can be shown
that low-diameter real-world graphs do not have sparse separators [7], constants
matter in practice, and any decrease in the communication volume, albeit not
asymptotically, would translate into lower running times on graph algorithms
that are typically communication-bound.

We outline the communication costs incurred in 2D partitioned BFS in this
section. 2D-partitioned BFS also captures 1D-partitioned BFS as a degenerate
case. For that, we first distinguish different ways of aggregating discovered edges
before the fold communication step:

1. No aggregation at all, local duplicates are not pruned before fold.
2. Local aggregation at the current frontier only. Our simulations in Section 6.1

follows this assumption.
3. Local aggregation over all (current and past) locally discovered vertices by

keeping a persistent bitmask. We implement this method in Section 6.2.

4

4. Global aggregation over all previously visited vertices. While this is future
work, it has the potential to decrease fold communication to O(n).

2D partitioning is often viewed as edge partitioning. However, a more struc-
tured way to think about it is that sets of vertices are collectively owned by
all the processors in one dimension. Without loss of generality, we will con-
sider that dimension to be the row dimension, which is of size pc. These sets
of vertices are labeled as V1, V2, ..., Vpr and their outgoing edges are labeled as
Adj+(V1),Adj+(V2), ...,Adj+(Vpr

). Each of these adjacencies are distributed to
members of the row dimension: Adj+(V1) is distributed to P (1, :), Adj+(V2) is
distributed to P (2, :), and so on. The colon notation is used to index a slice of
processors, e.g. processors in the ith processor row are denoted with P (i, :).

The partial adjacency owned by processor P (i, j) corresponds to submatrix
Aij of the adjacency matrix of the graph. The indices of these submatrices need
not be contiguous and the submatrices themselves need not be square in general.

For a given processor P (i, j), the set of vertices that needs to be communi-
cated (received) in the kth BFS expand step is Fk ∩ find(sum(Aij) > 0), where
Fk is the frontier at the kth iteration, sum(Aij) computes the column sums of
the submatrix Aij and find() returns the set of indices for which the predicate
is satisfied. Note that some of these vertices might be owned by the processor
itself and need not be communicated.

A more graph-theoretic view is to consider the partitioning of adjacencies. If
Adj(v) of a single vertex v is shared among λ+ ≤ pc processors, then its owner
will need to send it to λ+−1 neighbors. Since each vertex is in the pruned frontier
once, the total communication volume for the expand phases over all iterations
is equal to the communication volume of the same phase of 2D SpMV [3].

Characterizing communication for the fold phase is harder. Consider a vertex
v of incoming degree 9 as shown in Figure 1. In sparse matrix terms, this corre-
sponds to a column with 9 nonzeros. We labeled its incoming adjacency, Adj−(v)
with a superscript that denotes the earliest iteration they were discovered. In
other words, all vk ∈ Fk. The figure partitions the adjacency to three parts, for
which we use different colors.

a1

b2

c2

d2 e3

f1

g2

h0
i3

v

Fig. 1. Partitioning of Adj−(v).

5

Let us consider a space-time partitioning of edges. Each edge e is labeled with
two integers: (p, k). p denotes the partitioning this edge belongs to, while k is
the BFS phase in which e is traversed (remember each edge is traversed exactly
once).

The volume of communication due to v in the fold phase is at most degree(v),
which is realized when every e ∈ Adj−(v) has a distinct label, i.e. no two edges
that are traversed by the same process during the same iteration. Another upper
bound is O(diameter · (λ− − 1)), which might be lower than degree. λ− ≤ pr
is the number of processors among which Adj−(v) is partitioned, and diameter
gives the maximum number of BFS iterations. Consequently, for the vertex in
our example, comm(v) ≤ min(diameter · (λ− − 1),degree(v)) = min(8, 9) = 8.

a1

b2

c2

d2 e3

f1

g2

h0
i3

v

(a) 1st iteration, vol=1

a1

b2

c2

d2 e3

f1

g2

h0
i3

v

(b) 2nd iteration, vol=1

a1

b2

c2

d2 e3

f1

g2

h0
i3

v

(c) 3rd iteration, vol=2

a1

b2

c2

d2 e3

f1

g2

h0
i3

v

(d) 4th iteration, vol=1

Fig. 2. Partitioning of Adj−(v) per BFS iteration.

Figure 2 shows the partitioning of Adj−(v) per BFS iteration. Note that
v itself belongs to the “black” partition. At the first iteration, communication
volume is 1 due to the “red” processor discovering v through the edge (h, v)
and sending the discovered v to the black processor for marking. At the second
iteration, both the green and black processors discover v and communication
volume is 1 from green to black. Continuing this way, we see that the aggregate
communication due to folding of v is 5.

If we implement global aggregation (global replication of discovered vertices),
the total communication volume in the fold phase will decrease all the way down
to the SpMV case of (λ− − 1). However, this involves an additional communi-
cation step similar to the expand phase, in which processors in the column
dimension exchange newly visited vertices.

6

4 Graph/hypergraph partitioning

Our baseline scenario is to take the given ordering of vertices and edges as-is
(i.e., the natural ordering), and partitioning the graph into 1D or checkerboard
(2D). The second scenario is to randomly permute vertex identifiers, and then
partitioning/distributing edges in a 1D or a checkerboard manner. These two
scenarios do not explicitly optimize for an objective function.

We can also use a graph partitioner to generate a 1D row-wise partition-
ing minimizing a specific objective function. We use Metis [6] in this study.
Lastly, we experiment with hypergraph partitioning, which exactly captures to-
tal communication costs of sparse matrix-dense vector multiplication in its ob-
jective function. We used PaToH [2] and report on results from its row-wise and
checkerboard partitioning algorithms. Our objective is to study how graph and
hypergraph partitioning affect computational load balance and communication
costs. In both cases of PaToH, we generate a symmetric permutation as output,
since input and output vectors have to be distributed in the same way to avoid
data shuffling after each iteration.

We define V (d, p) to be the number of words sent by processor p at the dth
BFS phase, on a run with P processors that takes D level-synchronous iterations
to finish. We report the following:

1. Total communication volume over the course of BFS iterations:

TotalVolume =

D∑
d=1

P∑
p=1

V (d, p).

2. Sum of maximum communication volumes for each BFS iteration:

MaxVolume =

D∑
d=1

max
p∈{1...P}

V (d, p).

Although we report on total communication volume over the course of BFS
iterations, we are most concerned with MaxVolume metric. It is a better proxy
for the time spent on remote communication, since the slowest processor in each
phase determines the overall time spent in communication.

5 Experimental Setup

Our parallel BFS implementation is level-synchronous, and so it is primarily
meant to be applied to low-diameter graphs. However, to quantify the impact of
barrier synchronization and load balance on the overall execution time, we run
our implementations on several graphs, both low- and high-diameter.

We categorize the following DIMACS Challenge instances as low diameter:
the synthetic Kronecker graphs (kron g500-simple-logn and kron g500-logn

families), Erdos-Renyi graphs (er-fact1.5 family), web crawls (eu-2005 and
others), citation networks (citationCiteseer and others), and co-authorship

7

networks (coAuthorsDBLP and others). Some of the high-diameter graphs that
we report performance results on include hugebubbles-00020, graphs from the
delaunay family, road networks (road central), and random geometric graphs.

Most of the DIMACS test graphs are small enough to fit in the main memory
of a single machine, and so we are able to get baseline serial performance numbers
for comparison. We are currently using serial partitioning software to generate
vertex partitions and vertex reorderings, and this has been a limitation for scaling
to larger graphs. However, the performance trends with DIMACS graphs still
provide some interesting insights.

We use the k-way multilevel partitioning scheme in Metis (v5.0.2) with the
default command-line parameters to generate balanced vertex partitions mini-
mizing total edge cut. We relabel vertices and distribute edges to multiple pro-
cesses based on these vertex partitions. Similarly, we use PaToH’s column-wise
and checkerboard partitioning schemes to partition the sparse adjacency matrix
corresponding to the graph. While we report communication volume statistics
related to checkerboard partitioning, we are still unable to use these partitions
for reordering, since PaToH edge partitions are not necessarily aligned.

We report parallel execution times on ‘Hopper’, a 6392-node Cray XE6 sys-
tem located at Lawrence Berkeley National Laboratory. Each node of this sys-
tem contains two twelve-core 2.1 GHz AMD Opteron ‘MagnyCours’ processors.
There are eight DDR3 1333-MHz memory channels per node, and the observed
memory bandwidth with the STREAM [8] benchmark is 49.4 GB/s. The main
memory capacity of each node is 32 GB, of which 30 GB is usable by applica-
tions. A pair of compute nodes share a ‘Gemini’ network chip, and these network
chips are connected to form a 3D torus (of dimensions 17×8×24). The observed
MPI point-to-point bandwidth for large messages between two nodes that do not
share a network chip is 5.9 GB/s. Further, the measured MPI latency for point-
to-point communication is 1.4 microseconds, and the cost of a global barrier is
about 8 microseconds. The maximum injection bandwidth per node is 20 GB/s.

We use the GNU C compiler (v4.6.1) for compiling our BFS implementa-
tion. For inter-node communication, we use Cray’s MPI implementation (v5.3.3),
which is based on MPICH2. For intra-node threading, we use the GNU C com-
piler’s OpenMP library. We report performance results up to 256-way MPI pro-
cess concurrency in this study. In all experiments, we use four MPI processes per
socket and one OpenMP thread per process. We did not explore multithread-
ing within a node in the current study. This may be another potential source
of load imbalance, and we will quantify this in future work. More details on
multithreading within a node can be found in our recent parallel BFS paper [1].

To compare performance across multiple systems using a rate analogous to
the commonly-used floating point operations/second, we normalize the serial
and parallel execution times by the number of edges visited in a BFS traversal
and present a ‘Traversed Edges Per Second’ (TEPS) rate. For an undirected
graph with a single connected component, the BFS algorithm would visit every
edge in the component twice. We only consider traversal execution times from
vertices that appear in the largest connected component in the graph (all the

8

DIMACS test instances we used have one large component), compute the mean
search time (harmonic mean of TEPS) using at least 20 randomly-chosen sources
vertices for each benchmark graph, and normalize the time by the cumulative
number of edges visited to get the TEPS rate.

6 Performance Analysis and Results

6.1 Empirical modeling of communication

We first report machine-independent measures for communication costs. For this
purpose, we simulate parallel BFS using a MATLAB script whose inner kernel,
a single BFS step local to a processor, is written in C++ using mex for speed. For
each partition, the simulator does multiple BFS runs (in order) starting from dif-
ferent random vertices to report an accurate average, since BFS communication
costs, especially the MaxVolume metric, depend on on the starting vertex. The
imbalance values reported in Tables 5 and 6 are for storage of the graph itself,
and exclude the imbalance among the frontier vertices. When reporting the edge
cut ratio to the total number of edges in Table 1, the denominator counts each
edge twice (since an adjacency is stored twice).

The reported communication volume for the expand phase is exact, in the
sense that a processor receives a vertex v only if it owns one of the edges in
Adj+(v) and it is not the owner of v itself. We this count a vertex as one word of
communication. In contrast, in the fold phase, the discovered vertices are sent in
〈parent , vertex id〉 pairs, resulting in two words of communication per discovered
edge. This is why values in Table 1 sometimes exceed 100% (i.e. more total com-
munication than the number of edges), but are always less than 200%. For these
simulations, we report numbers for both 1D row-wise and 2D checkerboard par-
titioning when partitioning with the natural ordering, partitioning after random
vertex relabeling, and partitioning using PaToH. The 1D partitions obtained
with Metis are mostly similar to PaToH 1D row-wise numbers, and we do not
report them in current work.

p = 4 × 1 p = 16 × 1 p = 64 × 1
Graph

N R P N R P N R P

kron-simple-logn18 7.7% 7.6% 6.3% 22.7% 23.1% 19.5% 47.5% 53.4% 45.0%
coAuthorsDBLP 45.2% 81.3% 10.9% 74.9% 148.9% 19.8% 90.1% 182.5% 27.2%
eu-2005 5.3% 23.2% 0.3% 8.7% 63.8% 1.9% 12.3% 107.4% 7.2%
coPapersCiteseer 4.7% 14.7% 1.9% 8.7% 47.9% 3.4% 10.8% 102.5% 4.8%

delaunay n20 52.4% 123.7% 0.2% 59.3% 178.0% 0.6% 60.6% 194.4% 1.4%
rgg n 2 20 s0 0.2% 85.5% 0.1% 0.6% 160.1% 0.3% 2.5% 188.9% 0.6%

Table 1. Percentage of TotalVolume for 1D row-wise partitioning to the total number
of edges (lower is better). N denotes the natural ordering, R denotes the ordering with
randomly-permuted vertex identifiers, and P denotes reordering using PaToH.

For the cases of natural and random ordering, the load-balanced ‘2D vector
distribution’ [1] is assumed. This vector distribution matches the 2D matrix

9

distribution. Each processor row (except the last) is responsible for t = bn/prc
elements. The last processor row gets the remaining n−bn/prc(pr−1) elements
Within the processor row, each processor (except the last) is responsible for
l = bt/pcc elements. PaToH distributes both the matrix and the vectors in
order to optimize the communication volume, so PaToH simulations might have
unbalanced vector distribution.

p = 2 × 2 p = 4 × 4 p = 8 × 8
Graph

N R P N R P N R P

kron-simple-logn18 0.71 0.73 0.52 0.51 0.51 0.42 0.43 0.39 0.34
coAuthorsDBLP 1.35 0.92 0.69 1.31 0.91 0.76 1.40 1.00 0.85
eu-2005 1.89 0.73 1.29 1.90 0.56 0.60 1.63 0.57 0.48
coPapersCiteseer 1.32 0.67 0.64 1.25 0.46 0.74 1.35 0.39 0.81

delaunay n20 1.79 0.95 0.60 2.16 1.09 0.59 2.45 1.24 0.60
rgg n 2 20 s0 135.54 0.75 0.61 60.23 0.80 0.64 18.35 0.99 0.66

Table 2. Ratio of TotalVolume with 2D checkerboard partitioning to the TotalVolume
with 1D row-wise partitioning (less than 1 means 2D improves over 1D).

For 1D row-wise partitioning, random relabeling increases the total commu-
nication volume (i.e., the edge cut), by a factor of up to 10× for low-diameter
graphs (realized in coPaperCiteseer with 64 processors) and up to 250× for
high-diameter graphs (realized in rgg n 2 20 s0 with 16 processors), compared
to the natural ordering. Random relabeling never decreases the communication
volume. PaToH can sometimes drastically reduce the total communication vol-
ume, as seen by the case delaunay n20 graph (15× reduction compared to natu-
ral ordering and 45× reduction compared to random relabeling for 64 processors)
in Table 1. However, it is of little use with synthetic Kronecker graphs.

p = 4 × 1 p = 16 × 1 p = 64 × 1
Graph

N R P N R P N R P

kron-simple-logn18 1.04 1.06 1.56 1.22 1.16 1.57 1.63 1.42 1.92
coAuthorsDBLP 1.84 1.01 1.39 2.58 1.05 1.85 3.27 1.13 2.43
eu-2005 1.37 1.10 1.05 3.22 1.28 3.77 7.35 1.73 9.36
coPapersCiteseer 1.46 1.01 1.23 1.81 1.02 1.76 2.36 1.07 2.44

delaunay n20 2.36 1.03 1.71 3.72 1.13 3.90 6.72 1.36 8.42
rgg n 2 20 s0 1.94 1.09 2.11 4.89 1.21 6.00 9.04 1.49 13.34

Table 3. Ratio of P ·MaxVolume to TotalVolume for 1D row-wise partitioning (lower
is better).

Table 2 shows that 2D checkerboard partitioning generally decreases total
communication volume for random and PaToH orderings. However, when applied
to natural ordering, 2D generally increases the communication volume, with
the exception of kron-simple-logn18 graph. For synthetic Kronecker graphs,

10

the communication reduction of using a 2D partitioning is proportional to the
number of processors, but for other graphs a clear trend is not visible.

p = 2 × 2 p = 4 × 4 p = 8 × 8
Graph

N R P N R P N R P

kron-simple-logn18 1.31 1.31 2.08 1.14 1.12 1.90 1.12 1.09 1.93
coAuthorsDBLP 1.51 1.28 1.28 2.51 1.08 1.81 4.57 1.12 1.97
eu-2005 1.70 1.32 1.78 3.38 1.15 3.25 8.55 1.19 8.58
coPapersCiteseer 1.38 1.29 1.20 2.66 1.07 1.59 4.82 1.04 2.12

delaunay n20 1.40 1.30 1.77 3.22 1.12 4.64 8.80 1.18 11.15
rgg n 2 20 s0 3.44 1.31 2.38 8.25 1.13 6.83 53.73 1.18 17.07

Table 4. Ratio of P · MaxVolume to TotalVolume for 2D checkerboard partitioning
(lower is better).

(P · MaxVolume)/TotalVolume metric shown in Tables 3 and 4 show the
expected slowdown due to load imbalance in per-processor communication. This
is an understudied metric that is not directly optimized by partitioning tools.
Random relabeling of the vertices result in partitions that are load-balanced
per iteration; no processor does too much communication than the average.
The maximum happens with the eu-2005 matrix on 64 processors with 1D
partitioning, but even there maximum is less than twice (1.73×) the average. By
contrast, both natural and PaToH orderings suffer from imbalances, especially
for higher processor counts.

p = 4 × 1 p = 16 × 1 p = 64 × 1
Graph

N R P N R P N R P

kron-simple-logn18 1.03 1.02 1.01 1.10 1.08 1.02 1.29 1.21 1.02
coAuthorsDBLP 1.90 1.00 1.00 2.60 1.03 1.00 3.40 1.04 1.00
eu-2005 1.05 1.01 1.01 1.50 1.05 1.02 2.40 1.06 1.02
coPapersCiteseer 2.11 1.00 1.00 2.72 1.02 1.00 3.14 1.06 1.00

delaunay n20 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02
rgg n 2 20 s0 1.01 1.00 1.03 1.02 1.00 1.02 1.02 1.00 1.02

Table 5. Edge count imbalance: max i∈P (mi)/ averagei∈P (mi) with 1D row-wise par-
titioning (lower is better, 1 is perfect balance).

Tables 5 and 6 show the per-processor edge count (non-zero count in sparse
matrix) load imbalance for 1D and 2D checkerboard partitionings, respectively.
This measure affects memory footprint and local computation load balance. 1D
row-wise partitioning gives very good edge balance for high-diameter graphs,
which is understandable due to their local structure. This locality is not affected
by any ordering either. For low-diameter graphs that lack locality, natural or-
dering can result in up to a 3.4× higher edge count on a single processor than
the average. Both the random ordering and PaToH orderings seem to take care

11

p = 2 × 2 p = 4 × 4 p = 8 × 8
Graph

N R P N R P N R P

kron-simple-logn18 1.03 1.01 1.01 1.06 1.04 1.03 1.15 1.11 1.03
coAuthorsDBLP 2.46 1.00 1.03 5.17 1.02 1.01 10.33 1.02 1.02
eu-2005 1.91 1.03 1.03 3.73 1.06 1.03 9.20 1.13 1.05
coPapersCiteseer 3.03 1.01 1.02 7.43 1.00 1.03 15.90 1.02 1.02

delaunay n20 1.50 1.00 1.04 2.99 1.00 1.03 5.99 1.01 1.04
rgg n 2 20 s0 2.00 1.00 1.04 4.01 1.00 1.04 8.05 1.01 1.03

Table 6. Edge count imbalance: max i∈P (mi)/ averagei∈P (mi) with 2D checkerboard
partitioning (lower is better, 1 is perfect balance).

of this issue, though. On the other hand, 2D checkerboard partitioning exacer-
bates load imbalance in the natural ordering. For both low and high diameter
graphs, a high imbalance, up to 10 − 16×, may result with natural ordering.
Random ordering lowers it to the 11% envelope and PaToH further reduces it
to approximately 3− 5%.

6.2 Impact of Partitioning on parallel execution time

We next study parallel performance on Hopper for some of the DIMACS graphs.
To understand the relative contribution of intra-node computation and inter-
node communication to the overall execution time, consider the Hopper mi-
crobenchmark data illustrated in Figure 3. The figure plots the aggregate band-
width (in GB/s) with multi-node parallel execution (and four MPI processes per
node) and a fixed data/message size. The collective communication performance
rates are given by the total number of bytes received divided by the total ex-
ecution time. We also generate a ‘random memory references’ throughput rate
(to be representative of the local computational steps discussed in Section 2),
and this assumes that we use only four bytes of every cache line fetched. This
rate scales linearly with the number of sockets. Assigning appropriate weights
to these throughput rates (based on the the communication costs reported in
the previous section) would give us a lower bound on execution time, as this
assumes perfect load balance.

We report parallel execution time on Hopper for two different parallel con-
currencies, p = 16 and p = 256. Tables 7 and 8 give the serial performance rates
(with natural ordering) as well as the relative speedup with different reorderings,
for several benchmark graphs. There is a 3.5× variation in serial performance
rates, with the skewed-degree graphs showing the highest performance and the
high diameter graphs road central and hugebubbles-00020 the least perfor-
mance. For the parallel runs, we report speedup over the serial code with the
natural ordering. Interestingly, the random-ordering variants perform best in all
of the low-diameter graph cases. Comparing the relative speedups across low-
diameter graphs, we see that the Metis-partitioned variant is comparable to the
performance of the random variant only for coPapersCiteseer. For the rest of
the graphs, the random variant is faster than Metis ordering by a large margin.
The second half of the table gives the impact of checkerboard partitioning on the

12

1 2 4 8 16 32 64 128 256

2

5

10

20

50

100

200

300

500

800

A
gg

re
ga

te
 B

an
dw

id
th

 (
G

B
/s

)

Number of nodes

Computation (RandomAccess)
Fold (Alltoall)
Expand (Allgather)

Fig. 3. Strong-scaling performance of collective communication with large messages
and intra-node random memory accesses on Hopper.

running time. There is a moderate for the random variant, but the checkerboard
scheme is slower for the rest of the schemes. The variation in relative speedup
across graphs is also surprising. The synthetic low-diameter graphs demonstrate
the best speedup overall. However, the speedups for the real-world low-diameter
graphs are 1.5× lower, and the relative speedups for the high-diameter graphs
are extremely low.

Figure 4 gives a breakdown of the average parallel BFS execution and inter-
node communication times for 16-processor parallel runs, and provides insight
into the reason behind varying relative speedup numbers. We also report the
execution times with PaToH partitions in this case. For all the low-diameter
graphs, at this parallel concurrency, execution time is dominated by local com-
putation. The local discovery and local update steps account for up to 95% of
the total time, and communication times are negligible. This is expected and in
line with the microbenchmark rates in Figure 3. Comparing the computational
time of random ordering vs. Metis reordering, we find that BFS on the Metis-
reordered graph is significantly slower. The first reason is that Metis partitions
are highly unbalanced in terms of the number of edges per partition for this
graph, and so we can expect a certain amount of imbalance in local computa-
tion. The second reason is a bit more subtle. Partitioning the graph to minimize
edge cut does not guarantee that the local computation steps will be balanced,
even if the number of edges per process are balanced. The per-iteration work is
dependent on the number of vertices in the current frontier and their distribution
among processes. Randomizing vertex identifiers destroys any inherent locality,
but also improves local computation load balance. The partitioning tools reduce

13

Relative Rel. Speedup
Perf Rate

Speedup over 1D
p = 1 × 1 p = 16 × 1 p = 4 × 4

Graph
N N R M N R M

coPapersCiteseer 24.9 5.6× 9.7× 8.0× 0.4× 1.0× 0.4×
eu-2005 23.5 6.1× 7.9× 5.0× 0.5× 1.1× 0.5×
kron-simple-logn18 24.5 12.6× 12.6× 1.8× 1.1× 1.1× 1.4×
er-fact1.5-scale20 14.1 11.2× 11.2× 11.5× 1.1× 1.2× 0.8×

road central 7.2 3.5× 2.2× 3.5× 0.6× 0.9× 0.5×
hugebubbles-00020 7.1 3.8× 2.7× 3.9× 0.7× 0.9× 0.6×
rgg n 2 20 s0 14.1 2.5× 3.4× 2.6× 0.6× 1.2× 0.6×
delaunay n18 15.0 1.9× 1.6× 1.9× 0.9× 1.4× 0.7×

Table 7. BFS performance (in millions of TEPS) for single-process execution, and
observed relative speedup with 16 MPI processes (four nodes, four MPI processes per
node, 1 OpenMP thread per process). The fastest variants are highlighted in each case.

edge cut and enhance locality, but also seems to worsen load balance, especially
for skewed degree distribution graphs. The PaToH-generated 1D partitions are
much more balanced in terms of number of edges per process (than the Metis
partitions for Kronecker graphs), but the average BFS execution still suffers
from local computation load imbalance. Next consider the web crawl eu-2005.
The local computation balance even after randomization is not as good as the
synthetic graphs. One reason might be that the graph diameter is larger than
the Kronecker graphs. 2D partitioning after randomization only worsens the
load balance. The communication time for the fold step is somewhat lower for
Metis and PaToH partitions compared to random partitions, but the times are
not proportional to the savings projected in Table 3. This deserves further in-
vestigation. coPapersCiteseer shows trends similar to eu-2005. Note that the
communication time savings going from 1D to 2D partitioning are different in
both cases.

As seen in Table 7, the level-synchronous approach performs extremely poorly
on high-diameter graphs, and this is due to a combination of reasons. There is
load imbalance in the local computation phase, and this is much more apparent
after Metis and PaToH reorderings. For some of the level-synchronous phases,
there may not be sufficient work per phase to keep all 16 processes busy. In
addition, just the barrier synchronization overhead is extremely high (See, for
instance, the cost of the expand step with 1D partitioning for road central. This
should ideally be zero, because there is no data exchanged in expand for 1D par-
titioning. However, multiple barrier synchronizations of a few microseconds turn
out to be a significant cost). Both Metis and PaToH generate extremely good
partitions (very low edge cuts, well-balanced partitions), and this is reflected to
some extent in the fold phase cost.

Table 8 gives the parallel speedup achieved with different reorderings at
256-way parallel concurrency. The Erdos-Renyi graph gives the highest paral-
lel speedup for all the partitioning schemes, and they serve as an indicator of
the speedup achieved with good computational load balance. The speedup for

14

0	

50	

100	

150	

200	

250	

300	

Random-­‐1D	
 Random-­‐2D	
 Me1s-­‐1D	
 PaToH-­‐1D	

BF
S	

%
m
e	

(m

s)
	

Par%%oning	
 Strategy	

Computa1on	
 Fold	
 Expand	

(a) kronecker-logn18 (total)

0	

0.5	

1	

1.5	

2	

2.5	

3	

Random-­‐1D	
 Random-­‐2D	
 Me2s-­‐1D	
 PaToH-­‐1D	

Co
m
m
.	
 &

m
e	

(m

s)
	

Par&&oning	
 Strategy	

Fold	
 Expand	

(b) kronecker-logn18 (comm)

0	

50	

100	

150	

200	

Random-­‐1D	
 Random-­‐2D	
 Me0s-­‐1D	
 PaToH-­‐1D	

BF
S	

%
m
e	

(m

s)
	

Par%%oning	
 Strategy	

Computa0on	
 Fold	
 Expand	

(c) eu-2005 (total)

0	

2	

4	

6	

8	

10	

Random-­‐1D	
 Random-­‐2D	
 Me2s-­‐1D	
 PaToH-­‐1D	

Co
m
m
.	
 &

m
e	

(m

s)
	

Par&&oning	
 Strategy	

Fold	
 Expand	

(d) eu-2005 (comm)

0	

50	

100	

150	

200	

Random-­‐1D	
 Random-­‐2D	
 Me0s-­‐1D	
 PaToH-­‐1D	

BF
S	

%
m
e	

(m

s)
	

Par%%oning	
 Strategy	

Computa0on	
 Fold	
 Expand	

(e) coPapersCiteseer (total)

0	

2	

4	

6	

8	

10	

Random-­‐1D	
 Random-­‐2D	
 Me2s-­‐1D	
 PaToH-­‐1D	

Co
m
m
.	
 &

m
e	

(m

s)
	

Par&&oning	
 Strategy	

Fold	
 Expand	

(f) coPapersCiteseer (comm)

0	

200	

400	

600	

800	

1000	

1200	

Random-­‐1D	
 Random-­‐2D	
 Me2s-­‐1D	

BF
S	

%
m
e	

(m

s)
	

Par%%oning	
 Strategy	

Computa2on	
 Fold	
 Expand	

(g) road central (total)

0	

100	

200	

300	

400	

500	

Random-­‐1D	
 Random-­‐2D	
 Me2s-­‐1D	

Co
m
m
.	
 &

m
e	

(m

s)
	

Par&&oning	
 Strategy	

Fold	
 Expand	

(h) road central (comm)

Fig. 4. Average BFS execution time for various test graphs with 16 MPI processes (4
nodes, four MPI processes per node, 1 OpenMP thread per process).

real-world graphs is up to 5× lower than this value, indicating the severity of
the load imbalance problem. One more reason for the poor parallel speedup may
be that these graphs are smaller than the Erdos-Renyi graph. The communi-
cation cost increases in comparison to the 16-node case, but the computational
cost comprises 80% of the execution time. The gist of these performance results
is that for level-synchronous BFS, partitioning has a considerable effect on the
computational load balance, in addition to altering the communication cost. On

15

current supercomputers, the computational imbalance seems to be the bigger of
the two costs to account for, particularly at low process concurrencies.

Relative Rel. Speedup
Perf Rate

Speedup over 1D
p = 1 × 1 p = 256 × 1 p = 16 × 16

Graph
N N R M N R M

coPapersCiteseer 24.9 10.8× 13.7× 12.9× 0.5× 2.5× 0.7×
eu-2005 23.5 12.9× 14.7× 8.8× 0.6× 2.7× 0.6×
kron-simple-logn18 24.5 42.3× 41.9× 16.3× 2.6× 2.6× 0.3×
er-fact1.5-scale20 14.1 57.1× 58.0× 50.1× 1.6× 1.6× 1.1×

road central 7.2 1.2× 0.7× 1.3× 1.9× 2.1× 1.1×
hugebubbles-00020 7.1 1.6× 1.5× 1.6× 1.5× 2.2× 2.0×
rgg n 2 20 s0 14.1 1.5× 1.3× 1.6× 1.2× 1.2× 1.3×
delaunay n18 15.0 0.6× 0.5× 0.5× 1.8× 1.9× 2.1×

Table 8. BFS performance rate (in millions of traversed edges per second) for single-
process execution, and observed relative speedup with 256 MPI processes (64 nodes,
four MPI processes per node, 1 OpenMP thread per process).

7 Conclusions

Our study highlights limitations of current graph and hypergraph partitioners
for the task of partitioning graphs for distributed computations. Below, we list
some crucial ones:

1. The frequently-used partitioning objective function, total communication
volume, is not representative of the execution time of graph problems such
as breadth-first search, on current distributed memory systems.

2. Even well-balanced vertex and edge partitions do not guarantee load-balanced
execution, particularly for real-world graphs. We observe a range of relative
speedups, between 8.8× to 50×, for low-diameter DIMACS graph instances.

3. Although random vertex relabeling helps in terms of load-balanced parallel
execution, it can dramatically reduce locality and increase the communica-
tion cost to worst-case bounds.

4. Weighting the fold phase by a factor of two is not possible with two-phase
partitioning strategies employed in current checkerboard method in PaToH,
but it is possible with the single-phase fine grained partitioning. However,
fine grained partitioning arbitrarily assigns edges to processors, resulting in
communication among all processors instead of one processor grid dimension.

In future work, we plan to extend this study to consider additional distributed-
memory graph algorithms. Likely candidates are algorithms whose running time
is not so heavily dependent on the graph diameter.

16

References

1. Buluç, A., Madduri, K.: Parallel breadth-first search on distributed memory sys-
tems. In: Proc. ACM/IEEE Conference on Supercomputing (2011)

2. Çatalyürek, Ü.V., Aykanat, C.: PaToH: Partitioning Tool for Hypergraphs (2011)
3. Çatalyürek, Ü.V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix parti-

tioning: Models, methods, and a recipe. SIAM J. Scientific Computing 32(2), 656–
683 (2010)

4. The Graph 500 List. http://www.graph500.org, last accessed April 2011
5. Gregor, D., Lumsdaine, A.: The Parallel BGL: A Generic Library for Distributed

Graph Computations. In: Proc. Workshop on Parallel/High-Performance Object-
Oriented Scientific Computing (POOSC’05) (2005)

6. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing 48(1), 96–129 (1998)

7. Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM J. Nu-
mer. Analysis 16, 346–358 (1979)

8. McCalpin, J.: Memory bandwidth and machine balance in current high performance
computers. IEEE Tech. Comm. Comput. Arch. Newslett (1995)

9. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Çatalyürek,
Ü.V.: A scalable distributed parallel breadth-first search algorithm on BlueGene/L.
In: Proc. ACM/IEEE Conf. on High Performance Computing (SC2005) (Nov 2005)

